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This paper presents a three-dimensional finite-element model of the cat eardrum which includes 
inertial effects. The model is implemented using a hierarchical modeling scheme which permits 
the mesh resolution to be varied. The static behavior of the model is calculated as a function of 
mesh resolution in order to check the validity of an earlier model. The first six undamped natural 
frequencies, and the corresponding modal vibration patterns, are then calculated. They are found 
to lie between about 1.8 and 3.2 kHz for the standard values chosen for the model parameters. The 
effects on the natural frequencies of varying seven parameters of the model are described. 

PACS numbers: 43.63.Bq, 43.63.Hx, 43.66.Gf 

INTRODUCTION 

In an earlier paper {Funnell and Laszlo, 1978} a three- 
dimensional linear finite-element model of the cat eardrum 

was presented. In that paper only the low-frequency behav- 
ior of the model was considered; that is, the behavior in the 
region below about 1 kHz where inertial effects are not im- 
portant. In a later conference presentation {Funnell, 1980} 
the higher-frequency behavior was considered. However, 
the element mesh of the model presented in those two papers 
was quite coarse, making the higher-frequency results par- 
ticularly suspect since they involved more complicated vi- 
bration patterns. 

This paper presents a model which is essentially un- 
changed except that it has an element mesh which can be 
made finer than that of the earlier model. Section I discusses 

the definition of the model, and the way in which it can be 
givenvarious mesh resolutions. Section II presents the static 
behavior of the model, studying the effect of mesh resolution 
and comparing it to the earlier model. Section III presents 
the undamped natural frequencies and mode shapes of the 
model, and Sec. IV discusses the effects of varying certain 
parameters of the model. 

I. MODEL DEFINITION 

A. Mesh generation 

The model presented here is implemented using a hier- 
archical modeling scheme. This paper gives only a brief de- 
scription as it applies to the current model of the cat ear- 
drum; the details of the model-generation software will be 
described elsewhere. 

At the lowest level of the hierarchy, the three-dimen- 
sional coordinates of named control points are specified 
which define the o9erall geometry of the model. In the model 
considered here there are 20 control points defining the out- 
line of the eardrum (taken to be lying in the x-y plane), 14 
defining the outline of the manubrium, another four points 
which define the boundary between the pars tensa and the 
pars fiaccida, and finally two points defining the position of 
the ossicular axis of rotation. 

At the next level of the hierarchy, curved three-dimen- 
sional line segments are defined using the names of the above 
control points, by means of move, line, and spline com- 
mands. The move command is used to start a line segment, 
the line command generates a straight line segment, and the 
spline command produces a curved line segment using quasi- 
cubic splines {Hazony, 1979). In addition to this geometrical 
definition, one can also specify the boundary conditions cor- 
responding to each line: the lines defining the outline of the 
drum are fully clamped {that is, all six degrees of freedom at 
each node are fixed); the lines describing the manubrium 
(assumed to be rigid) are slaved to the line defining the ossi- 
cular axis of rotation; and the lines defining the boundary 
between pars tensa and pars flaccida are completely free. 

The third level of the hierarchy consists of definitions of 
surface regions, the outline of each being defined by linking 
together the lines defined earlier. In addition to the geometry 
one can define for each region (1) boundary conditions for 
internal nodes; (2) the material type (see Sec. ID);'and (3) the 
thickness. In this model there are regions for the pars tensa 
(free, material 1, 40pm thick); the pars flaccida (free, materi- 
al 3, 40pm thick); the manubrium (slaved, material 2, 40pm 
thick); and two small regions representing the ligament 
forming the boundary between the pars tensa and pars flac- 
cida (free, material 1,300 pm thick). 

Once the model is defined as described above, one can 

specify the desired mesh resolution n as a nominal number of 
elements across the diameter of the model. The "diameter" d 

is estimated as the largest of Xma x -- Xmin, Ymax -- Ymin, and 
Zma x --Zmin; the computer program calculates a line-seg- 
ment length of d/n, then subdivides each line of the model 
definition into equal straight-line segments of approximately 
that length. It then generates a two-dimensional triangular 
mesh over the projection of each surface region of the model 
onto the x-y plane. The algorithm attempts to make all of the 
triangular elements nearly equilateral. This mesh generation 
is completely automatic except for a small amount of inter- 
action required to guide the process for the coarser meshes 
(n • 10}. In Fig. 1 are shown the meshes generated for four 
values of n between 6 and 15. 
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FIG. 1. Finite-element meshes generated for various values of the mesh- 
resolution parameter n. (a) n = 6, (b) n = 9, (c) n = 12, (d) n = 15. 

B. Three-dimensional curvature 

The three-dimensional curvature of the eardrum model 

is obtained by assigning appropriate z coordinates to the in- 
ternal nodes produced by the mesh-generation process. The 
desired curvature is specified as a normalized radius of cur- 
vature c, as in Funnell and Laszlo (1978). Each node within 
the region corresponding to the pars tensa is considered to be 
located on a circular arc which lies in a plane perpendicular 
to the plane of the tympanic ring (the x-y plane), with one 
end on the manubrium and the other on the tympanic ting; 
the radius rf of this arc (or "fiber") is given by 

r=cd, 

where d/is the straight-line distance between the ends of the 
fiber. The only difference between this representation of the 
curvature and that used in our earlier model lies in how the 

end points of each fiber are located along the manubrium 
and along the tympanic ting. In the earlier model the arcs 
were positioned first by eye, and then the nodes were forced 
to lie on them (see Fig. 1 in the 1978 paper). In the present 
model the x-y position of each internal node is necessarily 
determined by the mesh-generation process; fiber endpoints 
are then calculated to correspond to the shortest fiber pass- 
ing through that node. The standard value of c used here is 
1.19; this value was used in the 1978 paper because it was the 
smallest value that did not result in any nodes lying above 
the plane of the tympanic ting, and it is used here for consis- 
tency. The result is an overall shape very similar, but not 
identical, to that of the old model. 

C. Bandwidth minimization 

Once the complete finite-element model has been gener- 
ated, it is processed through a bandwidth-minimization pro- 
gram which renumbers the nodes in order to reduce the 
bandwidth of the system stiffness matrix, using the a!go- 
rithm of Crane et al. (1976), adapted to the sA? finite-element 
program used here (see Sec. IE). This minimization is impor- 
tant because the automatic mesh generation produces very 
large bandwidths. The process is both fast and effective: ap- 
plied to the 1978 eardrum model, in a couple of seconds it 
produced a bandwidth 13% smaller than the smallest we 
ever managed to obtain manually. 

D. Mechanical properties 

The material type 1 has a Young's modulus of 200 X 108 
dyn cm -2 and a Poisson's ratio of 0.3. Material type 2 has a 
much higher stiffness and material type 3 has a much lower 
stiffness. For a discussion •of the basis of these values see 

Funnell and Laszlo (1982); they are the same as used for our 
earlier model (Funnell and Laszlo, 1978). The material den- 
sity (which was not needed in the earlier static model) is 
taken as 1 gcm- 3 for materials 1 and 3. For material 2 it is 
taken as zero, since the manubrial mass is included in the 
ossicular load. 

The ossicular load is taken to be an angular stiffness of 
28 k dyn cm (as in Funnell and Laszlo, 1978) and a moment 
of inertia of 0.2 mg cm 2 (as in Funnell, 1980; discussed in 
detail in Funnell, 1975), both acting about the axis of rota- 
tion. 

E. The finite-element program 

The finite-element program used here is a modified sub- 
set of sA? IV (Bathe et al., 1974). It is essentially the same 
program as that used in Funnell and Laszlo (1978), with the 
addition of the feature of "slave" nodes. This feature allows 

certain nodes to be slaved to a "master" node, so they share 
in its motions without requiring additional degrees of free- 
dom in the system matrix equation. This feature is used to 
represent the manubrium as a rigid body with a fixed axis of 
rotation parallel to the x axis. One node on the axis of rota- 
tion has a single degree of freedom corresponding to 0x, that 
is, to rotation about the x axis. For all nodes on the manu- 

brium, the degrees of freedom corresponding to y, z, and 0x 
are all slaved to the corresponding degrees of freedom on the 
axis of rotation; this means that the y and z displacements of 
the nodes are proportional to their distances from the axis, 
and their rotations 0• are equal to that on the axis of rota- 
tion. The main advantage of this approach is that it avoids 
the numerical problems introduced by having some element 
stiffnesses much larger than others in order to represent the 
rigidity of the manubrium. When this feature was tested on 
the 1978 eardrum model it resulted in differences of about 

10% in the displacements calculated, corresponding to a 
more accurate matrix inversion. 

From the above discussion it can be seen that the model 

being presented here is almost equivalent to the ones de- 
scribed in earlier papers. The most noticeable difference is 
the correction of an error in the 1978 paper. In the calcula- 
tions for that paper some of the nodes in the pars tensa were 
accidentally constrained to zero displacements. This result- 
ed in displacements that were somewhat too small, and a 
vibration pattern with its anterior peak shifted towards the 
manubrium. The effects were relatively small, largely be- 
cause the behavior of the eardrum is dominated by its larger 
posterior portion. In the following discussion of the effects of 
varying mesh resolution, the displacements for the corrected 
1978 model are shown. 

II. EFFECT OF MESH RESOLUTION ON STATIC 
BEHAVIOR 

The accuracy of a finite-element model is partly deter- 
mined by how fine the element mesh is. A coarse mesh may 
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introduce large errors due both to the discretization of the 
underlying partial differential equations, and to the inaccur- 
ate representation of the geometry of the object modeled. 
Unfortunately, the use of fine meshes may incur very large 
costs. The eardrum model used in earlier papers had quite a 
coarse mesh due to the restrictions of the computer software 
being used. It is important to examine the effects of mesh 
resolution, especially since we wish to consider the higher- 
frequency behavior of the model where the vibration pat- 
terns become more complex and hence more sensitive to li- 
mited mesh resolution. 

Figure 2 shows the maximal drum displacement and 
the manubrial-tip displacement, at 100 dB SPL, calculated 
for values of the resolution parameter n between 6 and 15. It 
can be seen that the maximal drum displacement is almost 
constant at about 700 nm for n equal to 12 or more, indicat- 
ing convergence of the behavior of the model. The error in 
the worst case (n = 7} is less than 30%. The pattern is similar 
for the manubrial-tip displacement. The ratio of the two dis- 
placements, which serves as a single quantitative measure of 
the shape of the vibration pattern, only varies by about 12% 
over the whole range of n. 

The finite-element mesh used in the 1978 paper had a 
resolution approximately equivalent to n = 8. The present 
results confirm, then, that the mesh of the earlier model was 
not so coarse as to introduce errors that were serious com- 

pared to the other sources of error in the model. The displa- 
cements calculated with that original mesh are included in 
Fig. 2: they are roughly 25% lower than the automatically 
generated mesh with the same resolution. This discrepancy 
is presumably due mainly to the small difference in three- 
dimensional shape resulting from the different ways of im- 
plementing the curvature as discussed above. 

III. NATURAL FREQUENCIES AND MODE SHAPES 

The undamped natural frequencies of the eardrum 
model are obtained by calculating the eigenvalues of the sys- 
tem stiffness matrix. The eigenvectors give the vibration pat- 

i i i 

Mesh Resolution 

FIG. 2. Convergence of computed displacements as mesh resolution in- 
creases. The horizontal axis is the mesh-resolution parameter n. The points 
on the upper curve give the maximal displacements of the pars tensa, while 
those on the lower curve give the displacements of the tip of the manubrium. 
The large symbols indicate the corresponding displacements for the 1978 
model (Funnell and Laszlo, 1978). 

terns corresponding to the natural frequencies. For this pa- 
per the first six natural frequencies and the corresponding 
mode shapes have been calculated, using a mesh resolution 
ofn ---- 12. 

Figure 3 shows the vibration patterns calculated using 
the standard parameter values given in Secs. IB and ID. The 
lowest natural frequency is at about 1.8 kHz, and the next 
five natural frequencies all occur within the next 1.4 kHz. 

To check that the mesh resolution at n---- 12 is ade- 

quate, the natural frequencies were also calculated with 
n ---- 15. The differences were all less than 40 Hz except for a 
difference of 125 Hz in the third natural frequency. 

Most of the first six natural frequencies correspond to 
resonant vibratory modes in the posterior region of the ear- 
drum. In Fig. 3, the vibration patterns for the third and 
fourth natural frequencies both involve a single anterior 
modal pattern which is combined with two different posteri- 
or patterns. In a case like this where two natural frequencies 
are very close together, the details of the mode shapes are 
very sensitive to the details of the model: a slight change in 
the mesh, for example, may cause the anterior mode to ap- 
pear at a single natural frequency unassociated with any pos- 
terior mode. The features that appear consistently here as 
well as in Funnell and Laszlo (1980) are that the first several 
natural frequencies occur between about 2 and 3 kHz and 
correspond to a single anterior resonant mode and several 
posterior modes of increasing complexity. 

The best available experimental data for comparison 
with these model results are the holographic data of Khanna 
and Tonndorf (1972}. Figures 7 and 9 in their 1972 paper 
illustrate the progressive breakup of the vibration pattern of 
the cat eardrum as the frequency is increased. Three things 
should be borne in mind when comparing their data to the 
vibration patterns shown here. The first is that their data 
correspond to arbitrary forcing frequencies, and not to the 
actual resonances of the eardrum. Second, their data include 
the internal and external damping of the eardrum, whereas 
the model here ignores damping. The third point is the con- 
siderable variability in the shapes of the experimentally ob- 
served vibration patterns as they become more complex. 
With these points in mind, one would judge that their data 

FIG. 3. The vibration patterns corresponding to the first six natural fre- 
quencies, for the standard set of parameters. The contours represent lines of 
constant vibration amplitude. The solid contours represent positive displa- 
cements, the long, dashed ones represent negative displacements. The short, 
dashed lines indicate zero amplitude. (a) 1.761 kHz, (b) 2.312 kHz, (c) 2. 590 
kHz, (d) 2.622 kHz, (e) 2.926 kHz, (f) 3.194 kHz. 
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suggest that the first natural frequency occurs closer to 3 
than to 2 kHz. 

IV. EFFECTS OF PARAMETER VARIATIONS 

The values of the parameters used in the present model, 
as in Funnell and Laszlo (1978}, are rough estimates based on 
a variety of arguments, and no attempt has been made to 
optimize the choice of parameter values in order to fit the 
holographically observed vibratory behavior. In this section 
the sensitivity of the model to variations in some of the pa- 
rameters will be investigated. 

Figure 4 shows the effects of varying the two param- 
eters that represent the load on the eardrum due to the ossi- 
cular chain and cochlea. In each part of Fig. 4 and of Figs. 5 
and 6, the values of the first six natural frequencies are plot- 
ted as functions of a particular parameter, with the other 
parameters having the standard values given above. Solid 
lines are drawn joining points having similar modal vibra- 
tion patterns. Dashed lines are used when two vibration pat- 
terns are different but apparently related, as when an anter- 
ior• resonance splits and starts to appear at two different 
frequencies, for example. No lines are drawn when it is not 
clear how a modal pattern at one parameter value has 
evolved from the neighboring value. In some cases, especial- 
ly when the natural frequencies are close together, there is 
considerable intermingling of modal patterns as the model 
parameters vary. 

For both ossicular parameters there is a noticeable but 
relatively small effect on the lowest natural frequency: the 
frequency increases with increasing stiffness and decreases 
with increasing inertia, as expected. Doubling the ossicular 
stiffness increases the lowest natural frequency by about 
3 %-5 %; halving the moment of inertia causes an increase of 
about 6%-12%. The ossicular load has very little effect on 
the higher frequencies. This is reasonable since the manu- 
brial displacement is smaller for the higher modes. 

The three pa•s of Fig. 5 present the effects of varying 
the stiffness, density, and thickness, respectively, of the pars 
tensa. As with the ossicular load, the natural frequencies 

(a) 4- (b) 

N 3- 
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'- 1- 

0 i i i I i 
0 1•) 2'0 3•) 4"0 5'0 oo 0 0.2 0".4 
Stiffness (kdyn cm) Moment of Inertia (mg cm ;) 

FIG. 4. Effects of varying ossicular parameters. In each part, the six curves 
represent the first six natural frequencies as functions of a particular param- 
eter, with the other parameters equal to their standard values. The large 
symbols indicate the standard value of the parameter being varied. (a) Angu- 
lar stiffness of the ossicular load, (b) ossicular moment of inertia. 
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FIG. 5. Effects of varying properties of pars tensa. (a) Stiffness (Young's 
modulus), (b) mass density, (c) thickness. 

increase with increasing stiffness and decrease with increas- 
ing mass, but in this case the variations are much greater: 
doubling the stiffness causes an increase in the lowest natural 
frequency of about 35%-40%, while halving the density 
causes ah increase of about 25 %-35 %. Increasing the thick- 
ness increases both the stiffness and the mass, with opposite 
effects on the natural frequency, but since the stiffness in- 
creases more rapidly with thickness than does the mass the 
overall effect is an increase in natural frequency with in- 
creasing thickness: doubling the thickness causes an increase 
of about 20%-30% of the lowest natural frequency. The 
effects on the higher natural frequencies are even more 
marked. 

The results of modifying the three-dimensional shape of 
the model are less straightforward than when one modifies 
the material properties. Figure 6(a) shows the effects of vary- 
ing the curvature of the sides of the drum, as represented by 
the normalized radius of curvature c. Increasing c (that is, 
making the drum's radial fibers flatter) has different effects 
on the different modes: the two lowest natural frequencies 
pass through a shallow maximum in the vicinity ofc = 1.5 to 
2, while the higher frequencies decrease more or less mono- 
tonically with increasing c. A value ofc in the neighborhood 
of 1.4, which subjectively is not an unreasonable estimate for 
the curvature actually found in the eardrum, is a good com- 
promise, giving a large lowest natural frequency without de- 
creasing the higher ones too much. 

(a) 4- (b) 
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FIG. 6. Effects of varying three-dimengional shape. (a) Normalized radius 
of curvature, (b) relative depth. 
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Figure 6(b) shows the effects of varying the depth of the 
cone formed by the eardrum. The variation is expressed in 
terms of a "relative depth," with the standard model shape 
having a value of one; as in Funnell and Laszlo (1978), the z 
coordinate of each point is multiplied by this relative depth. 
Thus a value of zero represents a perfectly flat eardrum, and 
values greater than one represent eardrums which are exag- 
geratedly deep. All of the first six natural frequencies in- 
crease markedly as the relative depth is increased from zero. 
The lower ones tend to reach a plateau at about one, while 
the higher ones all decrease as the depth is increased beyond 
one. A relative depth in the vicinity of one gives nearly maxi- 
mal values for all but one of the natural frequencies comput- 
ed here. 

V. DISCUSSION 

The hierarchical mesh-generation procedure described 
briefly in this paper greatly facilitates the preparation of fin- 
ite-element models of irregularly shaped structures like the 
eardrum. Using the ability to produce meshes of varying 
resolution, it is possible to select a mesh which provides a 
reasonable combination of cost and precision. 

The natural frequencies and mode shapes calculated 
with the present model are in reasonable agreement with 
experimentally observed results, indicating that the param- 
eters of the model are at least of the right order of magnitude. 
Most of the parameters are based on totally inadequate ex- 
perimental data. Considerable refinement of the model is 
possible, not only through better estimates of various param- 
eters but also by relaxing certain oversimplifications in the 
model. For example, the eardrum is modeled here as being 
uniform and isotropic although it is neither. 

In order.to provide some insight into the functional sig- 
nificance of different aspects of the model, the effects of sys- 
tematically varying several parameters have been described. 
It is interesting to note that, in the case of both the curvature 
parameter and the depth parameter, the standard value in 
the model is in the right neighborhood to broaden the fre- 
quency range as much as possible. In our discussion of the 

low-frequency model { 1978) we pointed out the apparent dis- 
advantage of the conical shape of the eardrum in terms of 
low-frequency sensitivity. The curves in Fig. 6 suggest that 
the conical shape, and also perhaps the curvature, may serve 
to extend the frequency range of the eardrum. 

It is seen from Fig. 4 that the ossicular parameters have 
little effect of the natural frequencies and mode shapes of the 
eardrum. This obviously does not mean that these param- 
eters are not important in determining the transmission 
characteristics of the middle ear. It is necessary to include 
the effects of damping in the model so that the displace- 
ments, including the ossicular displacement, can be calculat- 
ed as functions of stimulus frequency. 
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