
Modeling of the cat eardrum as a thin shell using the 
finite-element method 

W. Robert J. Funnell and Charles A. Laszlo 

BioMedical Engineering Unit & Department of Otolaryngology, McGill University, Montreal, 
Quebec, Canada 
(R•ceivcd 20 April 1977; revised 31 August 1977) 

A finite-element model of the cat eardrum is presented which includes the effects of the three-dimensional 
curved conical shape of the drum. The model is valid at low frequencies (below 1-2 kHz) and within the 
range of linear vibration amplitudes. The material properties used are based on a review of the literature. 
The critical material parameters are the stiffness (2X 108 dyn cm -2) and thickness (40 txm) of the pars 
tensa. The model exhibits a vibration pattern and amplitude very similar to those observed experimentally 
using laser holography. A number of parameters are varied in order to study their relative importance in 
the model. 

PACS numbers: 43.63.Bq, 43.63.Hx, 43.40.Ey 

INTRODUCTION 

Presently available models of the eardrum are inade- 
quate either to provide insight into the principles of the 
mechanical operation of the drum, or to permit quanti- 
tative analysis of pathological conditions as an aid in 
the planning and evaluation of corrective techniques. 
In a thesis (Funnell, 1975) and two conference papers 
(Funnell and Laszlo, 1974, 1975) we have introduced 
the use of the finite-element method as a powerful tool 
for the study of the eardrum (and of other parts of the 
auditory system as well). This paper describes the re- 
sults obtained so far with a finite-element model of the 
cat eardrum. The model simulates the behavior of the 
eardrum in response to uniform pressures of low enough 
frequencies that inertial and damping effects may be 
neglected. This corresponds to frequencies below 1 or 
2 kHz. The model is also restricted to sound pressures 
low enough that the response of the eardrum is linear. 

Section I discusses the finite-element method. Sec- 
tions II and I• then describe the model and the mechani- 

cal properties that we have assumed. Section IV pre- 
sents the results of the model and the effects of parame- 
ter variations. 

I. THE FINITE-ELEMENT METHOD 

A. General discussion 

The finite-element method has in the last several 

years become an extremely widespread engineering 
tool. Since this is the first time that the method has 
been applied to the auditory system, we shall give here 
a very brief outline of the principles involved. The 
method is fully discussed in a number of textbooks, in- 
eluding Zienkiewicz and Cheung (1967}, Zienkiewicz 
(1971), Desai and Abel (1972), Martin and Carey (1973), 
Nortie and de Vries (1973), Robinson (1973), Ural 
(1973), Brebbia and Connor (1974), and Segerlind (1976). 
In Sec. I B some details of the present implementation 
which will be meaningful to readers already familiar 
with the finite-element method are presented. 

When using the finite-element mothod, the physical 
system to be analyzed is divided into a number of dis- . 

crete two-dimensional or three-dimensional elements 

which may or may not correspond to natural subdivi- 
sions of the actual structure. For example, for an 
assembly of plates and beams, the elements may con- 
sist of the individual plates and beams themselves, if 
these are easy enough to analyze. On the other hand, 
a single plate of irregular shape (the eardrum, perhaps) 
may be considered to be composed of a number of tri- 
angular or quadrilateral plate elements which together 
make up the overall irregular shape, but which sepa- 
rately are easy to analyze. Once one has divided the 
structure into elements, the mechanical behavior of 
each element is analyzed, and its response to applied 
loads is expressed in terms of the displacements of 
its edges. The result of the element analysis is a ma- 
trix equation relating the behavior of the element to the 
applied forces. The components of the matrix are 
functions of the shape and properties of the element. 
One seldom needs actually to do this preliminary anal- 
ysis, since such analyses have been published in the 
literature and included in computer programs for a 
wide variety of element types. 

Once the element matrix equations are ready, they 
are all combined together into one overall system ma- 
trix equation. The boundary conditions are also in- 
cluded in the system matrix equation. Since the behav- 
ior of each element has been described in terms of its 

behavior at certain discrete nodes along its edges, this 
assembly of element matrices is simply a statement of 
the fact that a node shared by two elements must have 
the same displacement when considered as part of either 
element, mud of the fundamental assumption that the ele- 
ments can interact only at these discrete nodes. 

The most common alternative to the finite-element 

method is the finite-difference method, in which one 
writes down the differential equations governing the 
whole system, and then replaces the differential oper- 
ators by difference operators in order to permit a nu- 
merical solution. There are a number of features that 

make the finite-element method particularly attractive. 
First, in even its simplest form it handles irregular 
boundary shapes very conveniently. Second, it is rela- 
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AXIS OF ROTATION 

(a) 
FIG. 1. Pinitc-element model of the oat eardrum. (a) A top 
view, showing the outlines of the triangular elements. (b) A 
side view illustrating the curvature of the sides of the drum. 
The elements corresponding to the pars fia•eida are indicated 
by f, the manubcium by m. The two elements outl'med with 
dashed lines represent the body of the malleus. The rest of 
the elements correspond to the pars tensa, except f6r the four 
elements separating the pars tensa and pars fiaccida, wkieh 
correspond to part of the tympanic ring. 

tively easy to handle inhomogeneities, nonlinearities, 
and complex geometries and boundary conditions sys- 
tematically. Third, one need never analyze the behav- 
ior af the whole system. All of the analysis is done on 
simple elements, and even there one need not be able 
to write down the governing differential equations. The 
elements can be formulated using any method that is ' 
convenient, such as the variational method often used 
for plates and shells. (A shell is defined as a curved 
plate.) Another reason for the popularity of the finite- 
element method is that it can be understood on a physi- 
cal, or inbaitive, basis. Its use is essentially an ex- 
tension of the very common technique of analyzing me- 
chanical or electrical systems as networks of inter- 
connected discrete components. 

B. Details of this application 

A large number of general-purpose, finite-element 
computer program packages have been written. Pilkey, 
Saczalski, and Schaeffer (1974) and Pilkey and l•ilkey 
(1975) are excellent surveys of what is available. 

Our model has been implemented using the SAP IV 
finite-element program, available from the University 
of California (Bathe, Wilson, and Peterson, 1974). It 
is written in FORTRAN iV, and has been used on CDC• 
IBM, and UNIVAC computers. We are using a subset 
of SAP that we have installed on a DEC PDP-11/70, 
slightly modified with respect to input and output but 
computationally unchanged. 

We have used the "thin plate and shell" element of 
SAP (type 6), and also the 'q•oundary" element (type 7). 
The general thin-shell element is a quadrilateral formed 
from four flat compatible triangles. We have used the 
option of specifying our elements directly in terms of 
the individual triangles. The membrane (in-plane) be- 
havior of the element is represented by the very com- 
mon constant-strain triangle. The bending behavior is 
represented by a linear-curvature-compatible triangle 

with nine degrees of freedom (LCCT-9), which has been 
described in considerable detail by Clough and Tocher 
(1966) and Clough and Felippa (1969). A general dis- 
cussion of the derivation of finite-element approxima- 
tions to thin-plate mechanics may be found in any text- 
book on the finite-element method. We have not speci- 
fied normal rotational sti/fnesses since their effect 

would be very small for the sort of curvatures present 
in this model (Clough and Wilson, 1971). 

The '%oundary" element of SAP is a simple one-di- 
mensional spring, either axial or torsional. The ele- 
ment stiffness coefficients are added directly to the to- 
tal system stiffness matrix. 

In the eardrum model discussed here, 120 fiat, tri- 
angular plate elements are used for the eardrum and 
manubrium, plus two tersional spring elements repre- 
senting the stiffness at the ossicular hinge. The model 
is similar to that of Funnell (1975) and Funnell and 
Laszlo (1975). The differences are that (1) the posi- 
tion of the axis of rotation has been made more realis- 

tic; (2) the ossicular load is now represented by a ro- 
tational stiffness about that axis rather than by an arti- 
ficial stiffness applied to one point on the manubrium; 
(3) the nodal mesh has been refined by adding more 
points; and (4) the portion of the annular ligament join- 
ing the tympanic ring to the short process of the malleus 
has been explicitly included, to avoid unreasonably large 
displacements along the boundary between the pars tensa 
and pars flaccida. 

II. DESCRIPTION OF MODEL 

A. Geometry 

The essentials of the geometry of the eardrum model 
are shown in Fig. 1. Figure l(a) is a view of the drum 
model in the plane of the annulus, and shows the division 
into triangular elements. The outlines of the pars 
tensa, pars flaccida, and manubrium are shown with 
heavy lines, as are the element boundaries that corre- 
spond approximately to the orientations of the radial 
fibers of the drum. Each of the triangles represents 
one of the thin-plate elements of SAP. Figure l(b) is a 
section through the manubrium, showing the way it 
points medially. 

The position of the ossicular axis of rotation as shown 
in Fig. l(a) is that given by Khanna (1970, Fig. 21). 
It is implemented by using two very stiff triangular 
elements, indicated by dashed lines in the figure; these 
elements are attached to the upper end of the manubrium, 
and along the axis of rotation their displacements are 
all constrained to be zero except for rotation about the 
axis. The stiffness of the ossicular load is represented 
by torsional boundary elements. We have assumed for 
the purposes of this paper that the axis lies in the plane 
of the tympanic ring. In fact, moving the axis up or 
down (perpehdicular to the plane of the ring) by 0. 5 mm 
(which represents a quarter of the total 2-mm depth of 
the eardrum's cone) causes changes of less than 20• in 
the calcutated vibration amplitudes. 

At the time that this work was started, there were no 
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good data available to quantify the curvature of the sides 
of the cone formed by the eardrum. Helmholtz (1869) 
presented a formula for the shape of the eardrum, but 
this was based on a theoretical analysis of how the ear- 
drum might function rather than on any quantitative ob- 

servations of drum shape. Kirikae (1960) suggested a 
simpler formula, which could be adjusted to fit his rela- 
tively crude shape measurements quite well. For even 
greater simplicity, we have chosen to represent the 

ß curvature of the sides of the drum using circular arcs. 
lesser (1947) calculated that one of the coefficients in 
his analysis changed by only 7% if circular arcs were 
assumed instead of Helmholtz's curve. ] The overall 
degree of curvature of the eardrum is specified in the 
models by a dimensionless constant c. The radius of 
curvature of any particular radial fiber f is then given 
by 

= cd, , 

where d• is the straight-line distance between the ends 
of the fiber. The circular arcs are taken to lie in 

planes perpendicular to the plane of the tympanic ring. 

In the absence of appropriate data, the particular 
choice of c is more or less arbitrary. We have chosen 
to set c equal to 1.19, wlxich is the smallest value that 
does not result in any nodes of the model lying above 
the plane of the tympanic ring. The resulting curva- 
ture can be seen in Fig. l(b). In Sec. IVD below we 
discuss the effects of changing this parameter. 

The weakest feature of the geometrical approximation 
in the model is that each curved radial fiber is approxi- 
mated by only three straight-line segments. An esti- 
mate of the effect of this limited resolution was ob- 

tained by using a test case representing a slice out of 
an infinite curved plate, with a curvature similar to the 
eardrum model and subjected to a uniform pressure as 
the eardrum model is. The material thickness and 

stiffness were the same as for the pars tensa of the 
eardrum model, and a stiffness was applied to one edge 
of the shell such that the displacements were similar 
to those of the drum model. As the number of line seg- 
ments used to represent the curvature was increased 
from two to eight, the maximal displacement varied by 
less than 15%. The displacement of the edge of the 
shell corresponding to the manubrium, and the volume 
displacement, varied even less. In view of the uncer- 
tainties involved in determining the physical parameters 
of the model, the subdivision used in obtaining the re- 
suits presented below is considered to be adequate for 
the present purposes. 

B. •tiraulu$ 

The acoustic stimulation of the eardrum is repre- 
sented in the finite-element model by a uniform static 
pressure applied normal to each element. The only ex- 
ceptions are the two elements joining the manubrium to 
the axis of rotation, since they correspond to the body 
of the malleus, behind the eardrum and not directly 
exposed to the incoming sound. The pressure is speci- 
fied to be 28.28 dyncm '2, which is the zero-to-peak 
pressure variation equivalent to 100 dB SPL. 

C. Range of validity 

The range of displacement amplitudes over which this 
model is valid includes the range of normal hearing. 
One constraint is that the model is strictly linear, but 
the middle ear behaves linearly until quite high sound- 
pressure levels. Another constraint common to thin- 
plate finite elements is that the displacements should 
be much less than the element thickness, in o•'der to 
permit the simplifying assumption that in-plane and 
out-of-plane stresses are not coupled. In this case the 
maximal displacement found at 100 dB SPL, namely 
0.32 •m, is less than 1% of the drum thickness (40 /•m). 

The permissible frequency range for the present 
model is limited by the fact that inertial and damping 
terms have been completely ignored. This limits the 
upper frequency to about 1 kHz, below which the be- 
havior of the middle ear is essentially independent of 
frequency (Bc•'k•sy, 1941; Khanna, 1970; and so on). 
Another potential limitation of the frequency range is 
due to the assumption of uniformity of the driving sound- 
pressure field. Below 1 kHz, however, the wavelength 
of sound in air is much larger than the dimensions of the 
eardrum, so uniformity is a reasonable assumption. 

III. MECHANICAL PROPERTIES 

The mechanical properties used in the present models 
are based on an extensive review of the literature 

(Funnell, 1975), but it must be admitted that present 
experimental data are not sufficient to define accurately 
all of the required parameters. The values used here 
are rough estimates, and no attempt has been made to 
optimize the choice of parameter values in order to fit 
observed vibration amplitudes. 

We have assumed the eardrum to be isotropic, homo- 
geneous throughout its thickness, and uniform across 
its surface. Almost certainly, all of these assumptions 
are oversimplifications, but they are reasonable first 
approximations. Not enough data are yet available to 
completely describe the anisotropies, inhomogeneities, 
and nonuniformities of the drum in any case. 

We have taken a value of 2x 10 • dyncm '2 for the 
Young's modulus (stiffness) of the pars tensa. This was 
the value found by B•k•sy (1949) for a human cadaver 
eardrum. Other measurements, including those of 
Kirikae (1960), suggest that this is the right order of 
magnitude. Note that this is an "effective" stiffness for 
the combined epidermal, fibrous, and mucosal layers 
of the drum. The overall thickness of these layers has 
been taken to be 40 gin, based on observations by Lim 
(1968). This thickness is much less than the diameter 
of the eardrum, so there is no problem with using thin- 
plate finite elements. 

The values in the preceding paragraph apply to the 
pars tensa in particular. For the pars flaccida we have 
used a stiffness which is much lower, so that it has 
little effect on the overall behavior of the drum. The 

manubrium has been assigned a stiffness so high that 
it is essentially rigid. The part of the annular ring be- 
tween the pars tensa and pars flaccida has been assigned 
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a Young's modulus equal to that of the pars tensa, but 
has been made 300 •m thick. 

In the absence of relevant experimental data, the 
Poisson's ratio for the drum is assumed to be 0.3. We 

have shown that the value of this parameter is not very 
important (Funnell, 1975), 

We have assumed that there is no tension in the ear- 

drum in the absence of active middle-ear-muscle con- 

tractions. This is contrary to Helmholtz' ideas (1869), 
but there is no real experimental evident that such 
tension is essential to eardrum function. It will be 

seen that tension is not necessary for the present model 
to explain experimentally observed eardrum displace- 
ments. 

In the model considered here, we have assumed the 
eardrum to be "fully clamped" at its attachments to the 
annular ligament and to the manubrium. That is, all 
displacements and rotations are constrained to be zero 
(with respect to the supporting structure) at these 
boundaries, as opposed to a "simply supported" condi- 
tion, where only the displacements are constrained to 
be zero. There is no strong experimental evidence to 
support this assumption. However, we have shown that 
it makes little difference which type of support is 
adopted (Funnell, 1975). 

The loading of the ossicular chain and cochlea on the 
eardrum is represented in our model as a single effec- 
tive torsional stiffness acting at the "hinge" of the 
manubrium. There are no data available which provide 
an estimate for the stiffness of the ossicular chain 

separate from that of the eardrum. The middle-ear 
circuit models presented by Zwislocki (1963), Peake 
and Guinan (1967), Funnell (1972), and others do use 
parameter values for this quantity, but they are based 
strictly on empirical curve fitting with models whose 
eardrum representations are very crude. Consequent- 
ly, as a first approximation, we lmve made an order- 
of-magnitude estimate of the ossicular load based on 
various data. The most important contribution appears 
to be from the input impedance of the cochlea. Lynch, 
Nedzelnitsky, and Peake (1976) found that the total 
cocb_lear input impedance is capacitive at low frequen- 
cies, with a value of about 5.6x 10 B acoustic ohms at 
100 Hz. Assuming a stapedial-footplate area of 0.012 
cm 2 (Wever and Lawrence, 1954), this corresponds to a 
mechanical impedance of about 51x 104 dyn cm 't. 
Taking the incudal lever arm to be 0.19 cm (again 
from Wever and Lawrence) gives an effective angular 
stiffness of about 18x103 dyn cm due to the cochlea. 

To estimate the stiffness due to the suspensory struc- 
tures of the incus and malleus, we have used oversim- 
plified geometrical models. For the posterior incudal 
ligament, we have calculated the stiffness of a cylindri- 
cal elastic bushing with inner and outer diameters of 
0.05 and 0.15 cm, a length of 0.05 cm, and material 
properties the same as the pars tensa; dividing the 
resultant stiffness by four to account for the fact that 
the ligament does not completely surround the posterior 
process of the incus gives an angular stiffness of 8500 
dyn cm. Modeling the anterior process of the malleus 

as a uniform rod, fully clamped to the temporal bone 
at one end and to the body of the malleus at the other, 
with diameter 0.01 cm and length 0.3 cm, and a stiff- 
ness of 10 li dyn cm '2, gives an angular stiffness of only 
126 dyn cm. The nonfibrous tissue surrounding this 
process appears to contribute even less stiffness. 

The total calculated angular stiffness due to the co- 
chiea and posterior ligament is thus 26.8x 103 dyn cm. 
To account for small additional stiffnesses of other 

attached structures, we have used an orerail value of 
28x 103 dyn cm. 

We have nnglected the loading effect of the middle-ear 
air cavities in this model. Inclusion of the cavities can 

be expected to reduce the manubrial displacements by 
about 5 dB (Peake and Guinan, 1967). Preliminary 
study of the plane-membrane model presented in Funnell 
(1975) suggests that the form of the displacement pat- 
tern (apart from its absolute amplitude) is not greatly 
affected by the cavities at low frequencies. 

IV. RESULTS 

A. Results for initial parameter values 

Figure 2 shows displacement contours calculated for 
the cat model using the parameter values specified 
above. The vibration pattern is very similar to that ob- 
served experimentally by Khanna (1970). The drum dis- 
placements are greater than those of the manubrium: 
There is an amplitude maximum in the posterior region, 
and a smaller local maximum in the anterior region. 

Apart from the general shape of the contour lines, 
two quantitative measures to use in comparing the ex- 
perimental and the calculated results are (1) the ampli- 
tude of the maximal drum displacement, and (2) the 
ratio of that displacement to the displacement of the tip . 
of the manubrium. The former is a measure of the 

FIG. 2. Vibration pattern calculated with the model. The 
contour lines are Unes of constant vibration amplitude, equally 
spaced on an amplitude scale. Only displacements in the z 
direction are considered, which corresponds to the component 
of displacement measured in the holographic experiments of 
Khanna and Tonndorf. The small triangle represents the point 
of maximal vibration amplitude, corresponding to 0.32 •n 
for a low-frequency pure-tone input of 100 dB SPL. 
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the manubrium is plotted against the degree of curvature of the 
sides of the drum. The inverted triangle represents the be- 
linriot at the normal curvature. As the radius of curvature is 

increased until the sides of the drum are essentially straight. 
the manubrial displacement decreases steadily. 

overall displacement of the drum, and the latter is a 
dimensionless measure of the coupling of the drum to 
ossicles and of the degree of sound transmission to the 
middle ear. Tonndorf and Khanna (1971) reported a 
maximal drum displacement of 1.5 lxm at 600 Hz and 
111 dBSPL. This is equivalent to 0.42 /xm at 100 dB 
SPL. (The frequency of 600 Hz is low enough that the 
displacement is practically the same as at 0 Hz. ) By 
comparison, the results presented in Fig. 2 show a 
maximal drum displacement of 0.32 •tm at 100 dB SPL. 

Khanna and Tonndorf (1972) report a ratio of peak 
displacement/tip displacement equal to 3 at low frequen- 
cies. The computed results in Fig. 2 have a ratio equal 
to 2.8. 

B. Variation of drum material properties 

ß Doubling the Young's modulus of the pars tensa re- 
duced the maximal drum displacement by about 48•; 
cutting the stiffness in half increased the maximal dis- 
placement by 79•. Similarly, doubling and halving the 
thickness of the pars tensa changed the maximal drum 
displacement by - 64• and 120•, respectively. In all 
four cases, however, the vibration pattern remained 
qualitatively the same, which is reflected in the fact that 
the largest concomitant change in the peak/tip displace- 
ment ratio was only about 17%. 

C. Variation of ossicular-hinge stiffness 

Doubling the stiffness of the ossicular hinge decreased 
the maximal displacement by only 11%; halving it in- 
creased the displacement by 6%. The form of the vibra- 
tion pattern was little changed, and the ratio peak/tip 
changed by 8% and - 4%, respectively. 

D. Variation of curvature 

Increasing the curvature parameter c, that is, straight. 
erring the radial fibers of the drum, increases the 
maximal drum displacement by up to 48%. The peak/ 
tip displacement ratio continues to increase indefinitely. 
A more meaningful parameter to look at in this case is 
the actual displacement of the manubrium, which is a 
direct measur • of how well the eardrum couples the 
applied sound *pressure to the middle ear. Figure 3 
shows that the displacement of the tip of the manubrium 
decreases markedly as the fibers straighten. 

The increase of peak displacement with increasing 
radius of curv:•ture, and the consequent inability to 
couple sound-pressure changes to the malleus, are ex- 
pected on the basis of normal shell behavior: A nearly 
flat shell canr•)t use its in-plane stiffness to resist 
transverse loads, and its bending stiffness will be low 
if the shell is ':hin. Thus the effective stiffness of the 

drum itsel/becomes small compared to that of the os- 
sicular load, ;Lnd the pressure variations are most 
easily accommodatod by deforming the drum, without 
displacing the manubrium very much. 

E. Variation of depth of cone 

The previous section showed that the nonzero curva- 
ture of the sides of the cone formed by the eardrum 
could aid in transmitting sound to the ossicles. One 
might also wonder if the conical shape itself has some 
functional significance. Figure 4 shows the effects on 
manubrial displacement of changing the depth of the 
cone. This w•Ls done by scaling the z coordinates of 
each point in tie model by a "relative depth" factor. 

0.6 
6 

n 

V 

RELATIVE DEPTH 

r. ffec[ of depth. The displacement of the Up of the FIG. 4. 

manubrium is plotted against the depth of the cone formed by 
the drum (norm•lized with resl•et to it• normal depth). A• 
in Fig. 3. the inverted triangle representa the normal behav- 
ior. Except when the drum is very close to being completely 
fiat, the manubrial displacement decreases as the depth is 
increased. The discrepancy for very fiat shapes may be a 
numerical probb•m associated with the resulting very small 
curvatures. 
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Note that the circular arcs formed by the radial fibers 
become elliptical under this operation. Increasing the 
depth of the cone reduces the displacement of the manu- 
brium, that is, reduces the ability of a given sound- 
pressure level to move the ossicles. This presumably 
is because the deeper conical shapes impart greater 
stiffness to the eardrum, just as argued (albeit in 
favor of the conical shape) by B•k•sy (1941) in connec- 
tion with his hinged-plate model. 

It would thus appear that the conical shape is disad- 
vantageous, assuming that the eardrum actually func- 
tions as modeled here. One might speculate, however, 
that the conical shape provides an "adequate" middle- 
ear sensitivity while permitting low eardrum mass, 
and thus good high-frequency response. ff the drum 
were flat, or a very shallow cone, then a given degree 
of sensitivity would require a stiffer (and thus heavier) 
drum than if it were a deeper cone. Gran (1968) found 
that a stiffness of 60-250 times the true value was re- 

quired to get reasonable displacements with a plane- 
plate model. 

It is also possible that the conical shape is important 
in conjunction with the shape of the terminal portion of 
the ear canal and the inclination of the drum with re- 

spect to the canal. 

F. Effect of anisotropy 

Since the model is quite successful using isotropic 
material properties, it has not been necessary to intro- 
duce anisotropy, and it does not seem worthwhile at the 
moment to do a detailed study of the effects of anisotro- 
py in view of the number of questions still unresolved 
concerning eardrum properties and behavior. However, 
this section discusses a single example of displacements 
calculated with an anisotropic model, to give an idea of 
what may be expected. 

In line with assumptions of Helmholtz (1869) and Esser 
(1947), the radial fibers have been assumed to be much 
less extensible than the circular fibers. In particular, 
the Young's modulus in the radial direction (as defined 
by the element boundaries shown in Fig. 1) has been 
left at the value of 2x 108 dyn cm '2 used before, while 
the Young's modulus in the perpendicular direction (in 
each element) has been reduced to 106 dyn cm '2. The 
two Poisson's ratios, and the shear modulus, have been 
set of zero, equivalent to assuming that the radial fi- 
bers slide over one another without lateral interaction. 
This assumption is open to question, but there are no 
experimental data available to decide the issue. The 
vibration pattern under these conditions has basically 
the same shape as with isotropic material properties, 
but the displacements are 2.5 to 3 times larger. This 
indicates that the drum would be more effective in 

transmitting vibrations to the ossicles if it were aniso- 

tropic in the way described here. This expectation was, 
of course, what prompted I-Ielmholtz's original hypoth- 
esis that the circular fibers were much more extensible 

than the radial fibers: The latter are in an ideal posi- 
tion to transmit forces to the manubrium, while the for- 
mer can only interfere with this action. 

V. CONCLUSIONS 

Using physiologically reasonable parameter values, 
the shell model of the cat eardrum yields results quite 
close to previous experimental findings. The same is 
true of guinea pig and human models discussed in Fun- 
nell (1975), although the experimental data are less 
satisfactory in those cases. On this basis, one can 
conclude that presently available experimental evidence 
is consistent with the hypothesis that the eardrum is 
basically equivalent to an isotropic thin (curved) shell. 
It is not necessary at this time to postulate either 
resting tension in the drum or anisotropy (that is, dif- 
ferences in properties between the radial and circular 
fibers). 

The results described here suggest that the most im- 
portant determinants of low-frequency eardrum be- 
havior include material stiffness and thickness, curva- 
ture and conical shape, and anisotropy. Boundary con- 
ditions, Poisson's ratio, ossicular loading, and air 
loading are less important. These conclusions affect 
the direction of further efforts to understand the me- 
chanical functioning of this system. Quantitative data 
on the shape of the eardrum have recently become avail- 
able (Kharma and Tonndorf, 1975) which will help to re- 
fine the model considerably. 
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